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There exist a finite number of Pythagorean triples that have a common leg. In this paperwe derive the formulas that generatepairs of
primitive Pythagorean triples with common legs and also show the process of how to determine all the primitive and nonprimitive
Pythagorean triples for a given leg of a Pythagorean triple.

1. Introduction

A Pythagorean triple (PT) is a triple of positive integers(𝑎, 𝑏, 𝑐), which satisfy the Pythagorean equation

𝑎2 + 𝑏2 = 𝑐2, (1)

where 𝑐 represents the length of the hypotenuse; 𝑎 and 𝑏
represent the lengths of the other two sides (legs) of a right
triangle. We say a Pythagorean triple (𝑎, 𝑏, 𝑐) is primitive if
the numbers 𝑎, 𝑏, and 𝑐 are pairwise coprime (see [1]).

Several methods have been formulated that generate
Pythagorean triples (see [2–9]). For instance, the most com-
mon one is the classical Euclid formula [10, 11]:

(𝑎, 𝑏, 𝑐) = (𝑛2 − 𝑚2, 2𝑛𝑚, 𝑛2 + 𝑚2) (2)

whenever 0 < 𝑚 < 𝑛; 𝑛, 𝑚 ∈ Z+. A triple generated by this
method is primitive if and only if (𝑛,𝑚) = 1 and (𝑛 − 𝑚) is
odd. Note that (𝑛−𝑚) is odd if 𝑛,𝑚 have opposite parity [12],
or 𝑛 + 𝑚 ≡ 1(mod 2).

Now by Euclid’s general formula, any Pythagorean triple,
primitive and nonprimitive triples, can be written as (𝑘(𝑛2 −𝑚2), 𝑘(2𝑛𝑚), 𝑘(𝑛2+𝑚2)), where 𝑘 is some positive integer and𝑛,𝑚 are as defined in [10, 11].

Pythagorean triples form different patterns that can be
classified and applied in various fields such as cryptog-
raphy; see [13–20]. For instance, there exist Pythagorean
triples (𝑎, 𝑏, 𝑐) that have identical legs; e.g., (20, 21, 29)

and (20, 99, 101) are two primitive triples with 𝑎 = 20,
while (20, 15, 25) and (20, 48, 52) are nonprimitive triples
with the same leg. Similarly (105, 88, 137), (105, 208, 233),(105, 608, 617), and (105, 5512, 5513) are four primitive
Pythagorean triples which have 105 as the identical leg. The
nonprimitive triples which share the leg 105 are discussed in
Example 1.

In [1], Sierpinski states and proves that there exist only
a finite number of Pythagorean triples with a given leg 𝑎.
He further states and proves that, for each positive integer𝑛, there exist at least 𝑛 different Pythagorean triples with the
same leg 𝑎, where 𝑎 ∈ Z+. For instance, if we take

𝑎 = 2𝑛+1,
𝑏𝑘 = 2𝑘 (22𝑛−2𝑘 − 1) ,
𝑐𝑘 = 2𝑘 (22𝑛−2𝑘 + 1)

(3)

where 𝑘 = 0, 1, 2, ⋅ ⋅ ⋅ , 𝑛 − 1, then we obtain 𝑛 Pythagorean
triples (𝑎, 𝑏𝑘, 𝑐𝑘) with the same leg 𝑎 and with different
hypotenuses.

It is also stated in [1] that it is not easy to prove that,
for each positive integer 𝑛, there exist at least 𝑛 different
primitive Pythagorean triples with an identical leg. However
in this paper we prove formula for determining pairs of prim-
itive Pythagorean triples which have identical legs. We also

Hindawi
Journal of Mathematics
Volume 2019, Article ID 4286517, 8 pages
https://doi.org/10.1155/2019/4286517

http://orcid.org/0000-0003-4651-8596
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/4286517


2 Journal of Mathematics

Table 1: Pairs of primitive Pythagorean triples with identical leg,
even.

𝑛 𝑚 2𝑛𝑚 𝑛2 − 𝑚2 𝑛2 + 𝑚2
3 2 12 5 13
6 1 12 35 37
5 2 20 21 29
10 1 20 99 101
7 2 28 45 53
14 1 28 195 197
9 2 36 77 85
18 1 36 323 325

show how to determine all the primitive and nonprimitive
Pythagorean triples which have a given identical leg.

2. Pairs of Pythagorean Triples with
Identical Leg

Consider the following pairs of primitive Pythagorean triples
which can be generated from the equation

(𝑎, 𝑏, 𝑐) = (2𝑛𝑚, 𝑛2 − 𝑚2, 𝑛2 + 𝑚2) . (4)

FromTable 1, we observe that, for each pair of triples with
identical leg, the difference between the hypotenuse and the
odd leg is either 8 or 2.We then have

𝑎2 + 𝑏2 = (𝑏 + 8)2 , (5)

𝑎2 + 𝑑2 = (𝑑 + 2)2 . (6)

Solving (5), we obtain

𝑎2 + 𝑏2 = 𝑏2 + 16𝑏 + 64
16𝑏 = 𝑎2 − 64
𝑏 = 116𝑎2 − 4.

(7)

Observe from Table 1 that 𝑎 is the form 𝑎 = 4(2𝑘 + 1) where𝑘 ∈ Z+. Substitute this to obtain
𝑏 = 116 [4 (2𝑘 + 1)]2 − 4 = 4𝑘2 + 4𝑘 + 1 − 4
= 4𝑘2 + 4𝑘 + −3 = 4𝑘 (𝑘 + 1) − 3,

𝑐 = 4𝑘 (𝑘 + 1) − 3 + 8 = 4𝑘 (𝑘 + 1) + 5.
(8)

In a similar way, we can obtain 𝑏 = 16𝑘(𝑘 + 1) + 3 and 𝑐 =16𝑘(𝑘 + 1) + 5 from (6).
We have thus derived the following.

Proposition 1. If 𝑎 is an even leg of the Pythagorean triple(𝑎, 𝑏, 𝑐), then the following pair of equations produce primitive
Pythagorean triples with identical leg 𝑎:
(𝑎, 𝑏, 𝑐)

= {{{
(4 (2𝑘 + 1) , 4𝑘 (𝑘 + 1) − 3, 4𝑘 (𝑘 + 1) + 5)
(4 (2𝑘 + 1) , 16𝑘 (𝑘 + 1) + 3, 16𝑘 (𝑘 + 1) + 5)

(9)

for all 𝑘 ∈ Z+.
Proof. We show the first equation in (9) is a Pythagorean
triple.

𝑎2 + 𝑏2 = (8𝑘 + 4)2 + (4𝑘2 + 4𝑘 − 3)2
= 64𝑘2 + 64𝑘 + 16 + 16𝑘4 + 16𝑘3 − 12𝑘2

+ 16𝑘3 + 16𝑘2 − 12𝑘 − 12𝑘2 − 12𝑘 + 9
= 16𝑘4 + 32𝑘3 + 56𝑘2 + 40𝑘 + 25
= (4𝑘2 + 4𝑘 + 5)2 = 𝑐2.

(10)

We then show it is a primitive Pythagorean triple. By Euclid’s
formula,

(𝑎, 𝑏, 𝑐) = (2𝑛𝑚, 𝑛2 − 𝑚2, 𝑛2 + 𝑚2) (11)

is a primitive Pythagorean triple if (𝑛,𝑚) = 1, 𝑛 > 𝑚 > 0, and𝑛,𝑚 are integers of opposite parity.
Now,

2𝑛𝑚 = 4 (2𝑘 + 1) (12)

𝑛2 − 𝑚2 = 4𝑘 (𝑘 + 1) − 3 (13)

𝑛2 + 𝑚2 = 4𝑘 (𝑘 + 1) + 5 (14)

To solve for 𝑛 and𝑚, add (13) and (14), to obtain

2𝑛2 = 8𝑘2 + 8𝑘 + 2 ⇐⇒
𝑛2 = 4𝑘2 + 4𝑘 + 1 ⇐⇒
𝑛 = (2𝑘 + 1)

(15)

for all 𝑘 ∈ Z+.
Subtract (13) from (14) to get

2𝑚2 = 8 ⇐⇒
𝑚 = 2 (16)

Clearly (𝑛,𝑚) = ((2𝑘 + 1), 2) = 1; 2𝑘 + 1 > 2 for all 𝑘 ∈ Z+,
and

𝑛 + 𝑚 = 2𝑘 + 1 + 2 = 2 (𝑘 + 1) + 1 ≡ 1 (mod 2) . (17)

Therefore (9) is a primitive triple.
The last equation in (9), that is, (𝑎, 𝑏, 𝑐) = (4(2𝑘 +1), 16𝑘(𝑘 + 1) + 3, 16𝑘(𝑘 + 1) + 5), can be shown in a similar

manner.



Journal of Mathematics 3

Table 2: Pairs of primitive Pythagorean triples with identical leg,
odd.

𝑛 𝑚 𝑛2 − 𝑚2 2𝑛𝑚 𝑛2 + 𝑚2
4 1 15 8 17
8 7 15 112 113
5 2 21 20 29
11 10 21 220 221
6 1 35 12 37
18 17 35 612 613
8 3 55 48 73
28 27 55 1512 1513

Now, consider pairs of PPTs with identical leg, odd, and,
similarly, these can be obtained from (2).

From Table 2, we have two cases considering the differ-
ence between the hypotenuse and the leg 𝑏.
Case I. If 𝑐 = 𝑏 + 1, we have

𝑎2 + 𝑏2 = (𝑏 + 1)2
𝑎2 + 𝑏2 = 𝑏2 + 2𝑏 + 1

𝑎2 = 2𝑏 + 1
𝑏 = 𝑎2 − 12 ,
𝑐 = 𝑏 + 1 = 𝑎2 − 12 + 1 = 𝑎2 + 12 .

(18)

Observe, from Table 2, that 𝑎 is a semiprime; that is, 𝑎 =𝑝𝑞 where 𝑝 and 𝑞 are primes, 𝑝 > 𝑞.
Case II. In this case, for some prime 𝑞, we have

𝑎2 + 𝑏2 = (𝑏 + 𝑞2)2
𝑎2 + 𝑏2 = 𝑏2 + 2𝑏𝑞2 + 𝑞4

𝑎2 = 2𝑏𝑞2 + 𝑞4
𝑏 = 𝑎2 − 𝑞42𝑞2 ,
𝑐 = 𝑏 + 𝑞2 = 𝑎2 − 𝑞42𝑞2 + 𝑞2 = 𝑎2 + 𝑞42𝑞2 .

(19)

Substitute 𝑎 = 𝑝𝑞 in both cases to obtain the following.

Proposition 2. Let 𝑎 be the odd leg of a Pythagorean triple(𝑎, 𝑏, 𝑐), and then

(𝑎, 𝑏, 𝑐) =
{{{{{{{{{

(𝑝𝑞, 𝑝2 − 𝑞22 , 𝑝2 + 𝑞22 )
(𝑝𝑞, (𝑝𝑞)2 − 1

2 , (𝑝𝑞)2 + 1
2 ) (20)

produce a pair of primitive Pythagorean triples with identical
odd leg 𝑎, for all odd primes 𝑝, 𝑞 with 𝑝 > 𝑞.
Proof. Now

𝑎2 + 𝑏2 = (𝑝𝑞)2 +(𝑝2 − 𝑞22 )2 = 𝑝2𝑞2

+ 𝑝4 − 2𝑝2𝑞2 + 𝑞44 = 𝑝4 + 2𝑝2𝑞2 + 𝑞44
= (𝑝2 + 𝑞22 )2 = 𝑐2,

(21)

that is, the first equation in (20) is a Pythagorean triple. We
then show it is primitive. Since both 𝑝 and 𝑞 are odd primes,
let

𝑛2 − 𝑚2 = 𝑝𝑞 (22)

2𝑛𝑚 = 𝑝2 − 𝑞22 (23)

𝑛2 + 𝑚2 = 𝑝2 + 𝑞22 . (24)

Add (22) and (24) to get

2𝑛2 = 𝑝2 + 𝑞22 + 𝑝𝑞 ⇐⇒
𝑛2 = 𝑝2 + 2𝑝𝑞 + 𝑞24 ⇐⇒
𝑛2 = (𝑝 + 𝑞2 )2 ⇐⇒
𝑛 = 𝑝 + 𝑞2 ,

(25)

and subtract (22) from (24) to obtain

2𝑚2 = 𝑝2 + 𝑞22 − 𝑝𝑞 ⇐⇒
𝑚2 = 𝑝2 − 2𝑝𝑞 + 𝑞24 ⇐⇒
𝑚 = 𝑝 − 𝑞2 .

(26)

But 𝑝 and 𝑞 are odd primes so 𝑝 = 2𝑟 + 1 and 𝑞 = 2𝑠 + 1 for
some 𝑟, 𝑠 ∈ Z+ with 𝑟 ̸= 𝑠. Substitute 𝑝 and 𝑞 in 𝑛 and 𝑚 to
obtain

𝑛 = 𝑝 + 𝑞2 = (2𝑟 + 1) + (2𝑠 + 1)2 = (𝑟 + 𝑠) + 1,
𝑚 = 𝑝 − 𝑞2 = (2𝑟 + 1) − (2𝑠 + 1)2 = (𝑟 + 𝑠) .

(27)

It follows that the first equation in (20) is a primitive
Pythagorean triple for 𝑛 and 𝑚 are consecutive positive
integers and, hence, are of opposite parity and (𝑛,𝑚) = 1.

The second equation in (20) can be shown in a similar
way.
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In [21, 22], a formula is given which determines the
number of primitive Pythagorean triples that have a common
leg. However, these formulas do not show how to obtain
the primitive Pythagorean triples. In Proposition 6, we show
how to determine all the primitive as well as nonprimitive
Pythagorean triples for a given leg of a Pythagorean triple.

For easy reference, we first state and prove the following.

Lemma 3 (see [21, 22]). Consider the triple (𝑎, 𝑏, 𝑐) of positive
integers with 𝑎 as the even leg. Then the number of primitive
Pythagorean triples with 𝑎 as a common leg is

P (𝑎) = {{{
2𝜔(𝑡)−1 𝑖𝑓4 | 𝑎;
0 𝑖𝑓4 ∤ 𝑎, (28)

where 𝜔(𝑡) is the number of prime divisors of 𝑎.
Proof. If (𝑎, 𝑏, 𝑐) is a primitive Pythagorean triple and 𝑎 is
even, then we have integers 𝑛 and 𝑚 such that 𝑎 = 2𝑛𝑚,0 < 𝑚 < 𝑛, (𝑛,𝑚) = 1, and 𝑛 + 𝑚 ≡ 1(mod 2). Each such
pair uniquely determines (𝑎, 𝑏, 𝑐). Since 𝑛𝑚 is even, there is
no solution unless 4 | 𝑎. Suppose 4 | 𝑎, and suppose 𝑛 is even,
without loss of generality. If P(𝑎) denotes the set of prime
divisors of 𝑎, any subset of P(𝑎) uniquely determines 𝑛, and
hence𝑚, since no prime𝑝𝑖 can divide both 𝑛 and𝑚.There are2𝜔(𝑡)−1 choices of 𝑛, and hence as many choices of expressing𝑎 in the form 2𝑛𝑚with (𝑛, 𝑚) = 1 and 𝑛+𝑚 ≡ 1(mod 2).
Lemma 4 (see [21, 22]). Let (𝑎, 𝑏, 𝑐) be a Pythagorean
triple with 𝑎 as the odd leg. Then the number of primitive
Pythagorean triples with 𝑎 as a common leg is given by

P
∗ (𝑎) = 2𝜔(𝑡)−1 (29)

where 𝜔(𝑡) is the number of prime divisors of 𝑎. AlsoP∗(1) =0.
Proof. We wish to count the number of positive integer pairs𝑛, 𝑚 such that 𝑛2 − 𝑚2 = 𝑎 with 0 < 𝑚 < 𝑛, (𝑛,𝑚) = 1, and𝑛 + 𝑚 ≡ 1(mod 2).The parity of 𝑎 forces both factors 𝑛 + 𝑚,𝑛 −𝑚 to be odd, so that 𝑛,𝑚 are of opposite parity. Moreover(𝑛 + 𝑚, 𝑛 − 𝑚) = 1. Choosing the prime factors for one of𝑛 +𝑚, 𝑛 −𝑚 determines the prime factors of the other, and 𝑛,𝑚 are uniquely determined from 𝑛+𝑚, 𝑛−𝑚.However since
we must reserve the larger factor of 𝑎 for 𝑛 + 𝑚, only half of
all the subsets count.

The following lemma will be useful in the proof of the
proposition below.

Lemma 5. Consider the Pythagorean triple 𝑇 = (𝑎, 𝑏, 𝑐) with𝑎 as the even leg. 𝑇 is not primitive Pythagorean triple if any of
the following hold:

(1) if 𝑎 is odd
(2) if 𝑎 = 2𝑟 where 𝑟 is odd
(3) if 𝑎 = 2.

Proof. If (𝑎, 𝑏, 𝑐) is a primitive Pythagorean triple, then we
have integers 𝑛 and 𝑚 such that 𝑎 = 2𝑛𝑚, 0 < 𝑚 < 𝑛,(𝑛,𝑚) = 1, and 𝑛 + 𝑚 ≡ 1(mod 2). If 𝑎 is odd, we contradict𝑎 = 2𝑛𝑚. If 𝑎 = 2𝑟 where 𝑟 is odd, then 𝑛 and 𝑚 are both
odd, but then 𝑛 + 𝑚 ≡ 1(mod 2). If 𝑎 = 2, then 𝑛 = 𝑚 = 1, a
contradiction.

We extend the Lemmas 3 and 4 to determine all the
primitive and nonprimitive Pythagorean triples that have a
common leg, either odd or even.

Proposition 6. Let (𝑎, 𝑏, 𝑐) be a Pythagorean triple. Define
P(𝑎) = 2𝜔(𝑡)−1 where 𝜔(𝑡) is the number of prime divisors
of 𝑎, and R(𝑎) = ∑𝑘𝑖=1 2𝜔(𝑡𝑖)−1 where for some 𝑑𝑖 ∈ Z+ such
that 𝑑𝑖 | 𝑎, 𝜔(𝑡𝑖) is the number of prime divisors of 𝑎/𝑑𝑖 for
which (𝑎/𝑑𝑖, 𝑏/𝑑𝑖, 𝑐/𝑑𝑖) is a primitive Pythagorean triple. Then
the number of primitive and nonprimitive Pythagorean triples
that have a common leg 𝑎 isP(𝑎) +R(𝑎).
Proof. Suppose the leg 𝑎 is odd, then (𝑎, 𝑏, 𝑐) = (𝑛2 −𝑚2, 2𝑛𝑚, 𝑛2+𝑚2) is a primitive Pythagorean triple if 0 < 𝑚 <𝑛, (𝑛,𝑚) = 1 and 𝑛 + 𝑚 ≡ 1(mod 2).Then 𝑎 is of the form

𝑎 = 𝑝𝑒11 𝑝𝑒22 ⋅ ⋅ ⋅ 𝑝𝑒VV , (30)

where 𝑝1, 𝑝2, . . . , 𝑝V are odd primes and 𝑒1, 𝑒2, . . . , 𝑒V ∈ Z+.
By factorization,

𝑛2 − 𝑚2 = (𝑛 + 𝑚) (𝑛 − 𝑚) . (31)

We solve for 𝑛 and𝑚 such that 𝑥𝑦 = 𝑎where = 𝑛+𝑚,𝑦 = 𝑛−𝑚, and 𝑥 > 𝑦 for all pairs (𝑛,𝑚) in which 0 < 𝑚 < 𝑛, (𝑟, 𝑠) =1 and 𝑛 + 𝑚 ≡ 1(mod 2). Each of these pairs corresponds
to a primitive Pythagorean triple. By Lemma 4, if 𝜔(𝑡) is the
number of prime divisors of 𝑎, then the number of primitive
Pythagorean triples with common leg 𝑎 is given by P∗(𝑎) =2𝜔(𝑡)−1.

If (𝑎, 𝑏, 𝑐) is a nonprimitive triple then 𝑎, 𝑏, and 𝑐 have a
greatest common divisor 𝑑 ̸= 1.The possibilities of 𝑑 are the
factors of 𝑎. We eliminate 𝑑 for the case when 𝑎/𝑑 = 1, that
is, the case when 𝑎 = 𝑑. This is because 𝑎/𝑑 is the leg of a
Pythagorean triangle and should satisfy 𝑎/𝑑 ⩾ 3.

Let the remaining cases of 𝑑 be 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑘} for
some 𝑘 ∈ Z+. For each 𝑑𝑖 ∈ 𝐷, (𝑎/𝑑𝑖, 𝑏/𝑑𝑖, 𝑐/𝑑𝑖) is a primitive
Pythagorean triple when

𝑎𝑑𝑖 = 𝑛2 − 𝑚2,
𝑏𝑑𝑖 = 2𝑛𝑚,
𝑐𝑑𝑖 = 𝑛2 + 𝑚2

(32)

for 0 < 𝑚 < 𝑛, (𝑛,𝑚) = 1, and 𝑛 + 𝑚 ≡ 1(mod 2).
Let the number of prime divisors of 𝑎/𝑑𝑖 be𝜔(𝑡𝑖), for each𝑑𝑖. Then there are 2𝜔(𝑡𝑖)−1 primitive Pythagorean triples with

a common leg, 𝑎/𝑑𝑖. Each of these triples is then multiplied
by 𝑑𝑖 to obtain nonprimitive Pythagorean triples with the leg𝑎.
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The number of all the nonprimitive Pythagorean triples
for all 𝑑𝑖 ∈ 𝐷 is given by

R
∗ (𝑎) = 2𝜔(𝑡1)−1 + 2𝜔(𝑡2)−1 + ⋅ ⋅ ⋅ + 2𝜔(𝑡𝑘)−1

= 𝑘∑
𝑖=1

2𝜔(𝑡𝑖)−1. (33)

Then all primitive and nonprimitive Pythagorean triples are
given by P∗(𝑎) + R∗(𝑎) where P∗(𝑎) and R∗(𝑎) are as
defined.

Now, suppose that the leg 𝑎 is even, then (𝑎, 𝑏, 𝑐) =(2𝑛𝑚, 𝑛2 − 𝑚2, 𝑛2 + 𝑚2) is a primitive Pythagorean triple if0 < 𝑚 < 𝑛, (𝑛,𝑚) = 1, and 𝑛 + 𝑚 ≡ 1(mod 2).The leg 𝑎 is of
the form

2𝑛𝑚 = 2𝑒0𝑝𝑒11 𝑝𝑒22 ⋅ ⋅ ⋅ 𝑝𝑒V𝑤 ⇐⇒
𝑛𝑚 = 2𝑘−1𝑝𝑒11 𝑝𝑒22 ⋅ ⋅ ⋅ 𝑝𝑒VV (34)

where𝑝1, 𝑝2, . . . , 𝑝V are odd primes and 𝑒0 , 𝑒1, 𝑒2, . . . , 𝑒V ∈ Z+.
Now the set of generating pairs of positive integers, (𝑛,𝑚)

that have opposite parity, are relatively prime and 𝑛 > 𝑚 are

[𝑛𝑚, 1] , [ 𝑛𝑚2𝑒0−1 , 2𝑒0−1] , [𝑛𝑚𝑝𝑒11 , 𝑝
𝑒1
1 ] , [𝑛𝑚𝑝𝑒22 , 𝑝

𝑒2
2 ] , . . . ,

[𝑛𝑚𝑝𝑒𝑛𝑛 , 𝑝𝑒V𝑤] , . . . , [
𝑛𝑚𝑝𝑒11 𝑝𝑒22 , 𝑝

𝑒1
1 𝑝𝑒22 ] , . . .

(35)

That is, by Lemma 3, if P(𝑎) denotes the set of prime divisors
of 𝑎, any subset of P(𝑎) uniquely determines 𝑛, and hence𝑚,
since no prime 𝑝𝑖 can divide both 𝑛 and 𝑚. There are 2𝜔(𝑡)−1
choices of 𝑛, and hence as many choices of expressing 𝑎 in the
form 2𝑛𝑚 with (𝑛,𝑚) = 1.

Suppose (𝑎, 𝑏, 𝑐) = (2𝑛𝑚, 𝑛2 − 𝑚2, 𝑛2 + 𝑚2) is a nonprim-
itive Pythagorean triple. Then 𝑎, 𝑏, and 𝑐 have a greatest
common divisor 𝑑 ̸= 1.The possibilities of 𝑑 are drawn from
the factors of 𝑎.We consider all 𝑑 such that (𝑎/𝑑, 𝑏/𝑑, 𝑐/𝑑) is
primitive. Two cases arise.

Case I. By Lemma 5, we eliminate any 𝑑 such that 𝑎/𝑑 is odd;𝑎/𝑑 = 2𝑟 where 𝑟 is odd and 𝑎/𝑑 = 2.Moreover, as the even
leg of a Pythagorean triangle, 𝑎/𝑑 > 3.

Let the remaining values of 𝑑 be 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑘} for
some 𝑘 ∈ Z+. For each 𝑑𝑖 ∈ 𝐷, (𝑎/𝑑𝑖, 𝑏/𝑑𝑖, 𝑐/𝑑𝑖) is a primitive
Pythagorean triple when

𝑎𝑑𝑖 = 2𝑛𝑚,
𝑏𝑑𝑖 = 𝑛2 − 𝑚2,
𝑐𝑑𝑖 = 𝑛2 + 𝑚2

(36)

for 0 < 𝑚 < 𝑛, (𝑛,𝑚) = 1, and 𝑛 + 𝑚 ≡ 1(mod 2).
We thenfind all pairs (𝑛, 𝑚) such that 𝑛𝑚 = 𝑎/2𝑑𝑖.Each of

these pairs of (𝑛,𝑚) produces a primitive Pythagorean triple,

Table 3: Primitive Pythagorean triples with common leg 𝑎 = 105.
𝑛 𝑚 𝑛2 − 𝑚2 2𝑛𝑚 𝑛2 + 𝑚2
53 52 105 5512 5513
19 16 105 608 617
13 8 105 208 233
11 4 105 88 137

which is then multiplied by 𝑑𝑖 to produce a nonprimitive
triple with leg 𝑎 as desired.
Case II. We consider 𝑑 such that 𝑎/𝑑𝑖 > 1, odd. Then 𝑎/𝑑𝑖 =𝑛2 − 𝑚2 and we proceed to determine the primitive triples
as described above, for odd case of 𝑎. The primitive triples
obtained are then multiplied by 𝑑𝑖 to obtain nonprimitive
triples with a leg equal to 𝑎.

Thenumber of these nonprimitive Pythagorean triples for
each 𝑑𝑖 is 2𝜔(𝑡𝑖)−1 where 𝜔(𝑡𝑖) is the number of prime divisors
of 𝑎/𝑑𝑖, 𝑖 = 1, 2, . . . , 𝑘.The sum of all these triples is

R (𝑎) = 2𝜔(𝑡1)−1 + 2𝜔(𝑡2)−1 + ⋅ ⋅ ⋅ + 2𝜔(𝑡𝑘)−1
= 𝑘∑
𝑖=1

2𝜔(𝑡𝑖)−1. (37)

Then the number of all primitive and nonprimitive Pythag-
orean triples is

P (𝑎) +R (𝑎) , (38)

as desired, whereP(𝑎) andR(𝑎) are as defined above.

We illustrate this with some examples.

Example 1. Theproof of Proposition 6 lays out an easy way of
determining all the Pythagorean triples, both primitive and
nonprimitive, that have an identical leg.

Consider the Pythagorean triples with an identical leg𝑎 = 105. If (105, 𝑏, 𝑐) is a primitive Pythagorean triple, then𝑎 = 𝑛2 − 𝑚2 = (𝑛 + 𝑚)(𝑛 − 𝑚) = 105 = 105 × 1 =35 × 3 = 21 × 5 = 15 × 7. Solve for 𝑛, 𝑚 if 𝑥𝑦 = 105, where𝑥 = 𝑛 + 𝑚 and 𝑦 = 𝑛 − 𝑚 such that 𝑥 > 𝑦. We obtain(𝑛,𝑚) = {(53, 52), (19, 16), (13, 8), (11, 4)}, which produce
the four primitive Pythagorean triples shown in Table 3.

These numbers of primitive triples produced agree with
Lemma 4; that is,

P (105) = 2𝜔(𝑡)−1 = 23−1 = 4 (39)

Now suppose (105, 𝑏, 𝑐) is nonprimitive, then 105, 𝑏, and𝑐 have a greatest common divisor 𝑑 ̸= 1.The possibilities of 𝑑
are 𝑑 ∈ {3, 5, 7, 15, 21, 35, 105}. In this case, we only eliminate𝑑 = 105, that is, the case when 𝑎 = 𝑑. We then consider the
remaining values of 𝑑.
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Let 𝑑 = 3.Then (35, 𝑏/3, 𝑐/3) is primitive if

𝑛2 − 𝑚2 = 35,
2𝑛𝑚 = 𝑏3 ,

𝑛2 + 𝑚2 = 𝑐3
(40)

where 𝑛 > 𝑚 > 0 such that (𝑛,𝑚) = 1 and 𝑛 + 𝑚 ≡ 1(mod 2).
Now 35 = 𝑛2 − 𝑚2 = (𝑛 + 𝑚)(𝑛 − 𝑚). But 35 = 35 × 1 =7 × 5, so that (𝑛,𝑚) = {(18, 17), (6, 1)}. These produce the
nonprimitive triples:

{3 (35, 612, 613) , 3 (35, 12, 37)}
= {(105, 1836, 1839) , (105, 36, 111)} . (41)

In a similar way, 𝑑 = 5 leads to the triples {(105, 1100, 1105),(105, 100, 145)}. If 𝑑 = 7, we have {(105, 784, 791), (105,56, 119)}. Finally, each of 𝑑 = 15, 21, and 35, respec-
tively, leads to the triples (105, 360, 375), (105, 252, 273), and(105, 140, 175).

Observe the number of nonprimitive Pythagorean triples
described for each 𝑑 in Table 4.

Example 2. Let 𝑎 = 2𝑛𝑚 = 420 = 22 × 3 × 5 × 7.This implies𝑛𝑚 = 210 and by considering its factors, the possible set of
pairs of (𝑛,𝑚) are

(𝑛, 𝑚) = {(210, 1) , (105, 2) , (70, 3) , (42, 5) , (35, 6) ,(30, 7) , (21, 10) , (15, 14)} . (42)

Table 4: Number of nonprimitive Pythagorean triples with com-
mon leg 𝑎 = 105 for each value of 𝑑.
𝑑 𝑎𝑑 𝜔(𝑡𝑖) 2𝜔(𝑡𝑖)−1
3 35 2 2
5 21 2 2
7 15 2 2
21 5 1 1
35 3 1 1
Total 8

Table 5: Primitive Pythagorean triples with common leg 𝑎 = 420.
𝑛 𝑚 2𝑛𝑚 𝑛2 − 𝑚2 𝑛2 + 𝑚2
210 1 420 4099 44101
105 2 420 11021 11029
70 3 420 4891 4908
42 5 420 1739 1789
35 6 420 1189 1261
30 7 420 851 949
21 10 420 341 541
15 14 420 29 421

These produce the eight primitive Pythagorean triples shown
in Table 5.

Suppose (420, 𝑏, 𝑐) is nonprimitive, then 420, 𝑏, and 𝑐 have
the greatest common divisor 𝑑 ̸= 1.The possibilities of 𝑑 are

𝑑 ∈ {2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 70, 84, 105, 140, 210, 420} . (43)

Two cases arise.
In the first case, by Lemma 5, we eliminate all 𝑑 such

that 420/𝑑 is odd, 420/𝑑 = 2𝑟 where 𝑟 is odd and 420/𝑑 =2. Moreover 420/𝑑 ̸= 1. These conditions exclude the fol-
lowing set 𝑑 ∈ {2, 4, 6, 10, 12, 14, 20, 28, 30, 42, 60, 70, 84, 140,210, 420}.

We consider each of the remaining cases of 𝑑, that is,{3, 5, 7, 15, 21, 35, 105}.
Let 𝑑 = 3, and then (140, 𝑏/3, 𝑐/3) is primitive when

140 = 2𝑛𝑚,
𝑛2 − 𝑚2 = 𝑏3 ,
𝑛2 + 𝑚2 = 𝑐3 ,

(44)

where 𝑛 > 𝑚 > 0 such that (𝑛,𝑚) = 1 and 𝑛 + 𝑚 ≡1(mod 2). Now 𝑛𝑚 = 70 and the possibilities satisfying the

conditions above are (𝑛,𝑚) = {(70, 1), (35, 2), (14, 5), (10, 7)}.
These produce the primitive triples

{(140, 4899, 4901) , (140, 1221, 1229) , (140, 171, 221) ,
(140, 51, 149)} . (45)

Multiply each of these primitive triples by 𝑑 = 3 to obtain
{(420, 14697, 14703) , (420, 3663, 3687) ,
(420, 513, 663) , (420, 153, 447)} , (46)

as desired.
In a similar way the other values of 𝑑 lead to the non-

primitive triples shown in Table 6.
Secondly, we consider 𝑑 such that 𝑎/𝑑 is odd. Then 𝑑 ∈{4, 12, 20, 28, 60, 84, 140}.
Let 𝑑 = 4, and then 𝑎/𝑑 = 420/4 = 105 and as such105 = 𝑛2 − 𝑚2, 𝑏 = 2𝑛𝑚, and 𝑐 = 𝑛2 + 𝑚2. This has been

solved in Example 1. We obtain (𝑛,𝑚) = {(53, 52), (19, 16),(13, 8), (11, 4)}, which produce triples as in Table 7.
Note that when 𝑎/𝑑 = 105, nonprimitive triples are

generated as well. However we find that such triples will be
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Table 6: Nonprimitive Pythagorean triples with common leg 𝑎 = 420 for each odd value of 𝑑.
𝑑 (𝑛,𝑚) Primitive Triple Non-primitive Triple
5 (42, 1) (84, 1763, 1765) (420, 8815, 8825)

(21, 2) (84, 437, 445) (420, 2185, 2225)
(14, 3) (84, 187, 205) (420, 935, 1025)
(7, 6) (84, 13, 85) (420, 65, 425)

7 (30, 1) (60, 899, 901) (420, 6293, 6307)
(15, 2) (60, 221, 229) (420, 1547, 1603)
(10, 3) (60, 91, 109) (420, 637, 763)
(6, 5) (60, 11, 61) (420, 77, 427)

15 (14, 1) (28, 195, 197) (420, 2925, 2955)
(7, 2) (28, 45, 53) (420, 675, 795)

21 (10, 1) (20, 99, 101) (420, 2079, 2121)
(5, 2) (20, 21, 29) (420, 441, 609)

35 (6, 1) (12, 35, 37) (420, 1225, 1295)
(3, 2) (12, 5, 13) (420, 175, 455)

105 (2, 1) (4, 3, 5) (420, 315, 525)

Table 7: Nonprimitive Pythagorean triples with common leg 𝑎 = 420 for each even value of 𝑑.
𝑑 (𝑛, 𝑚) Primitive Triple Non-primitive Triple
4 (53, 52) (105, 5512, 5513) (420, 22048, 22052)

(19, 16) (105, 608, 617) (420, 2432, 2468)
(13, 8) (105, 208, 233) (420, 832, 932)
(11, 4) (105, 88, 137) (420, 352, 548)

12 (18, 17) (35, 612, 613) (420, 7344, 7356)
(6, 1) (35, 12, 37) (420, 144, 444)

20 (11, 10) (21, 220, 221) (420, 4400, 4420)
(5, 2) (21, 20, 29) (420, 400, 580)

28 (8, 7) (15, 112, 113) (420, 3136, 3164)
(4, 1) (15, 8, 17) (420, 224, 476)

60 (4, 3) (7, 24, 25) (420, 1440, 1500)
84 (3, 2) (5, 12, 13) (420, 1008, 1092)
140 (2, 1) (3, 4, 5) (420, 560, 700)

produced in the remaining values of𝑑.For example, primitive
triples generated when 𝑑 = 12 are (35, 612, 613) and (35,12, 37), which onmultiplying by 12 leads to (420, 7344, 7356)
and (420, 144, 444), respectively. But (420, 7344, 7356) and(420, 144, 444) are, respectively,multiples of (105, 1836, 1839)
and (105, 36, 111), which are nonprimitive triples when 𝑎 =105. As such to avoid repetition, we only take the primitive
triples that arise from each 𝑑.

Repeat the process for other values of 𝑑 to obtain
the triples shown in Table 7.

We see, from Tables 5–7, that there are 8 primitive and 32
nonprimitive Pythagorean triples with 420 as a common leg.

3. Conclusion

Propositions 1 and 2 define infinitely many pairs of primitive
Pythagorean triples that have identical legs. It remains an

open problem for one to extend the formulas in these
propositions and generalize for any 𝑛 number of primitive
Pythagorean triples which have identical legs.

Proposition 6 presents a simple technique of finding all
the primitive and nonprimitive Pythagorean triples associ-
ated with a given value, the leg of a Pythagorean triple. This
makes it easy to classify Pythagorean triples, with respect
to the values of the legs, and investigate different properties
that might be of interest to a researcher. For instance,
one can easily classify Pythagorean triples by considering
the divisibility of legs by any positive integer or legs of
Pythagorean triples that satisfy some sequences, amongmany
other properties.
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