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Abstract 

The main objective of this paper is to investigate the action of the cyclic group  on set, , the 

diagonals of a regular -gon. We will first discuss the transitivity and primitivity of this action, after which we 

will give useful results regarding the suborbits, subdegrees and ranks of this action. It is worth mentioning that 

most of the results here have been given as Lemmas and Theorems. 

 

1. Introduction 

Suborbital graphs of various permutation groups and their actions have been studied by many authors since its 

introduction by Sims(1967). Kamuti et al. (2012)have shown that  (the stabilizer of in ) acts transitively 

and imprimitively on .Ndirangu et al. (2014) worked on the dihedral group acting on the diagonals of a regular 

-gon and computed the rank and subdegrees of this action among other results. In this paper we aim to further 

research in this area by studying in detail the algebraic properties of the action of the cyclic group  on the 

diagonals of a regular -gon. 

2. Preliminaries 

The cyclic group, , is the group of rotational symmetries of a regular -gon. Throughout this work we will use 

 to represent the cyclic group which is of order . The set of the diagonals of a regular -gon,  

will be denoted by .  

Definition 2.1 

Let G be a group and X a non empty set. We say that G acts on the set X on the left if for each g G and each x  , 

there is a unique element gx  such that the following axioms hold; 
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a) 1x = x x , where 1 is the identity element of G.  

b) g(hx) = (gh)x g, h G and x . 

That is, the identity element of G is the identity permutation on X and the combined effect of applying h then g is 

the same as that of applying gh. We can also define the action of G on X from the right in a similar way. 

Definition 2.2 

Let a group G act on a set X. Then X is partitioned into disjoint equivalence classes called orbits or transitivity 

classes of the action. For each x  the orbit containing x is denoted by  which is defined as follows; 

 = {y }. 

Definition 2.3 

Let a group G act on a set X with x . The stabilizer of x in G, denoted as StabG (x) or Gx , is the set; 

Gx = { g x = x}. 

It is important to note that StabG (x) is a subgroup of G. 

 

Theorem 2.1 (Rose, 1978) 

Let a group G act on a finite set X with x . Then; 

 =  

Definition 2.4 

Let G act on a set X. The set of elements of X fixed by g G is called the fixed point set of g, denoted by Fix (g). 

Thus; 

Fix (g) = {x }. 

Lemma 2.1 (Rotman, 1973) 

Let a group G act on a set X. Then the number of orbits of G on X is given by; 

, where Fix (g) = {xϵX | g (x) = x}. 

Definition 2.5 

A group G acting on a set X is said to be transitive on X if it has only one orbit, and so  

= X, x ϵ X. Equivalently G is transitive on X if for every pair of points x, yϵX there exists gϵG such that 

gx = y. A group which is not transitive is called intransitive. 

Definition 2.6 

If G acts on a set X transitively and B X then B is called a block of the action if  
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gB = B or gB  =  for all gϵG. We note that the empty set , the singleton subsets of X and the set X 

itself are always blocks, referred to as the trivial blocks. 

 

Definition 2.7 

Let G act on a set X transitively, then if the action has some non-trivial blocks, then G is said to act imprimitively 

on X, otherwise G acts primitively on X. 

Theorem 2.2 (Wielandt, 1964) 

Let X be a set,  with x ϵ X. A transitive group G on X is primitive if and only if Gx is a maximal 

subgroup of G. 

Definition 2.8 

Let G act transitively on a set X and  the stabilizer of x , then;                  = {x}, , 

, . . . ,  are suborbits of G. The rank of G in this case is r. The sizes  ni =  where  i = 0, 1, 2, ...,r-1, 

often called the lengths of the surborbits , 

i = 0, 1, 2, …,r-1 are known as the subdegrees of G. The values of the ranks and subdegrees are independent of the 

choices of x X due to the transitivity of the action of the group. 

Definition 2.9 

Let Δ be an orbit of  on X. Define  

Δ
*
 = {gx | gϵG, xϵgΔ} 

then Δ
*
 is also an orbit of  and is called the  – orbit or the G- suborbit paired with Δ. 

Clearly |Δ| = |Δ
*
|. If Δ

*
 = Δ, then Δ is called a self- paired orbit of . 

Theorem 2.3 (Cameron, 1974) 

Let G act on the set X, and let gϵG, then the number of self-paired suborbits of G is given by; 

 

where Fix ( ) is the set of elements of X fixed by the permutation . 

3. Transitivity And Primitivity Of  Acting On  

For any even ,  has elements of the form;  

X =  
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and its order is , that is . 

Lemma 3.1 

The stabilizer of  in G is of order 2  and  

Proof 

Letting , we determine the stabilizer of the point . W. L. O. G we let  to be the diagonal joining the 

vertices 1 and  , that is  Since , we have that the 

stabilizer of the point  are , the identity element of G, and   a rotation  through . We note 

that,  

. 

This concludes that . 

Example 3.1.1 

Letting G = , then X =  with . 

Taking  then  and  

Lemma 3.2  

G acts transitively on the set X. 

Proof 

Given an , by Theorem 2.1 we establish that; 

 

 

This shows that , which implies that the action of  on  has only one orbit. Therefore 

by definition 2.5, we have that this action of on  is transitive. 

Alternatively, there are only two elements of  which fixes the elements of . These elements are 1, the identity 
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element, and , the rotation through the angle  In fact each of them will fix the  elements of . By 

Lemma 2.1, the number of  – orbits in  is given by;  

 

This shows that the action of G on X has got only one orbit hence transitive. 

Theorem 3.1 

The group  acts on  imprimitively if and only if  is not a prime. 

Proof 

Letting , clearly . Assuming  acts on  

imprimitively, this implies that  is not a maximal subgroup of . This implies that there exists an 

integer k such that . Therefore we can find an integer k, 1 , such that  

concluding that  is not a prime.  

Conversely, suppose  is not a prime, then there exists an integer k such that  Clearly  is a 

proper subgroup of  and it is of the form . This shows that; 

 

Thus  is not a maximal subgroup of G establishing the fact that the action of G on X is imprimitive as 

required completing the proof. 

Example 3.1.1 

Considering , then  The stabilizer of 

 is constituted as below, 

. 
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Since  is not a prime, we let . It’s clear that;  

. Hence  is not a maximal subgroup of , hence this 

action of  on  is imprimitive by Theorem 2.2.  

4 Suborbits, Subdegrees And Ranks Of The Action Of G On X 

Theorem 4.1 

The action of  on  has a rank of  with subdegrees , that is   of them. 

Proof 

Let  act on , taking , the stabilizer of  consist of two elements, that is; 

 . 

Recall, X = , thus the suborbits of G on X 

are as follows; 

 

 

 

 

We now compute the rank, , of this action as below, 

 

Therefore the rank is  as required. 
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Letting  be the subdegrees, we have that . This establishes 

that the subdegrees of the action of G on X are; . 

Example 4.1.1 

Let  and , the 

stabilizer of the first diagonal is given by; 

 

The suborbits of G on X are as below; 

 

 

 

 

 

 

 

To compute the rank, , of this action we solve , , that is .  

The subdegrees are; 

, 

where; , .   

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.1, 2016 

 

122 

Corollary 4.1.1 

In general the  suborbits of  on  are given by; 

,  

Theorem 4.2 

The action of  on  has two self – paired suborbits when  and only one self-paired suborbit 

when  

Proof 

Considering the case and ,  has two elements of order 4 and one element of 

order 2. Letting  be any of these elements, either of order two or four, we have that  fixes all the 

elements of . In addition to these elements the identity element in  also fixes all the elements of  when 

squared. Thus by Theorem 2.3,we can count all the self-paired suborbits of , this is given by; 

 

 

 

For the case when , we only have two elements of  that will fix the elements of  when 

squared. These elements are; the identity element and the element which is of order 2. 

 In fact they will fix all the elements of  when squared. Therefore the number of self-paired suborbits of  on 

 is in this case  given by; 
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Example 4.2.1 

Considering the case when , in particular we let . 

The set X  . Taking , then the stabilizer of  is; 

. 

The orbits of  are as listed below; 

, , , , , . 

We notice that; 

, , , . 

This shows that we have two self-paired suborbits of this action which are; and . 

Example 4.2.2 

The case when , we take . So . 

Taking , The stabilizer of  is given by; 

. 

The orbits of  are as follows;  

, , , , . 

Now, we notice that;  

, , . 

This establishes that it is only the trivial suborbit of  that is self –paired. 

Corollary 4.2.1 

Let  act on , then the suborbit  of  is paired with the suborbit , . 

Proof 

Let  and . To find the suborbit paired with  we find a , 

 such that, . To obtain the value of  we solve 
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, that is . This gives  implying that 

. To find the suborbit paired with  we evaluate 

 

 

 

 

 

Hence  is paired with  , that is . 

Example 4.2.1 

Considering the case when , we let  =  and so we have 

. The stabilizer of  is given by  . 

The suborbits of this action are; 

, , . 

For self-pairing we have that;  

,  

This confirms that;  as required. 

Corollary 4.2.2. 

If , the action of  on  has two self-paired suborbits. These are the trivial suborbit, , and 

the suborbit . If , this action has only one self-paired suborbit, which is the trivial suborbit 
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. 
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